

SYAGRUS CORONATA COMO **FONTE** DE COMPOSTOS **FITOQUÍMICOS** Ε **BIOATIVOS: ASPECTOS POTENCIAIS** SAÚDE **BIOLÓGICOS HUMANA** Ε INDUSTRIAIS NA VETERINÁRIA

ARTIGO DE REVISÃO

PENHA, Ellen Caroline da Silva¹, MOURA, Jhônata Costa², PIRES, Thâmara de Paula Reis Sousa³, CARVALHO, Rafael Cardoso⁴, SOUSA, Eduardo Martins de⁵, CAMARA, Adriana Leandro⁶, RIBEIRO, Rachel Melo⁷

PENHA, Ellen Caroline da Silva. *et al.* **Syagrus coronata como fonte de compostos bioativos: aspectos fitoquímicos e potenciais biológicos e industriais na saúde humana e veterinária.** Revista Científica Multidisciplinar Núcleo do Conhecimento. Ano. 08, Ed. 04, Vol. 06, pp. 29-50. Abril de 2023. ISSN: 2448-0959, Link de acesso:

https://www.nucleodoconhecimento.com.br/saude/syagrus-coronata,

10.32749/nucleodoconhecimento.com.br/saude/syagrus-coronata


RESUMO

As espécies do gênero *Syagrus* possuem uma importância socioeconômica, cultural e ambiental nas comunidades brasileiras onde são encontradas. Dentre as palmeiras de grande importância econômica e nutricional presentes no Semiárido brasileiro, destaca-se *Syagrus coronata* (Mart.) Beccari, conhecida como "ouricuri" e "licuri", predominantemente presente no nordeste do Brasil. Tradicionalmente, diferentes partes da planta têm sido empregadas em diversas aplicações medicinais. Na literatura, a planta se mostrou atóxica *in vivo* e *in vitro*, e seus fitonutrientes demonstraram variado potencial biológico. Por se tratar de uma planta com resultados promissores tanto biologicamente como quimicamente, e por ela já possuir propriedade industrial concedida, o interesse por mais estudos sobre ela devem aumentar durante os anos. Assim, o presente estudo vem para corroborar com um compilado de informações sobre a espécie através de uma revisão de literatura contendo 15 artigos de pesquisas sobre trabalhos inéditos da planta.

29

DOI:

RC: 143752

Palavras-chave: Syagrus coronata, Compostos bioativos, Potencial biológico.

1. INTRODUÇÃO

A família *Arecaceae*, anteriormente conhecida como *Palmae*, pertencente ao grupo das monocotiledôneas (*Liliopsida*) (JANSSEN; BREMER, 2004) com distribuição tropical e subtropical (PETOE; HEATUBUN; BAKER, 2018). O gênero *Syagrus* foi originalmente descrito por Martius em 1824, mas nenhuma espécie foi listada em seu trabalho (SOARES; PIMENTA; GUIMARÃES, 2013). Atualmente, existem 65 espécies, 2 subespécies e 14 híbridos naturais nesse gênero. Essas palmeiras ocupam uma variedade de habitats, como áreas tropicais, subtropicais úmidas, semiáridas e cerrados. O gênero é distribuído em todo o Neotrópico, com maior concentração no norte e nordeste do Brasil (NOBLICK, 2017).

As espécies do gênero *Syagrus* possuem uma importância socioeconômica, cultural e ambiental nas comunidades brasileiras onde são encontradas, apresentando diferentes usos, na construção civil, na alimentação humana e animal (GUIMARÃES; SHIOSAKI; MENDES, 2021) e no aproveitamento do óleo das amêndoas na culinária (SANTOS *et al.*, 2021; COIMBRA; JORGE, 2011), e exibindo potencial como fonte para geração de energia (BASTOS, 2020).

Dentre as palmeiras de grande importância econômica e nutricional presentes no Semiárido brasileiro, destaca-se a *Syagrus coronata* (Mart.) Beccari, conhecida como "ouricuri" e "licuri", existente no nordeste do Brasil (GUIMARÃES; SHIOSAKI; MENDES, 2021; RUFINO *et al.*, 2008; ANDRADE *et al.*, 2015). Quanto ao uso tradicional da *S. coronata*, diferentes partes da planta têm sido empregadas em diversas aplicações medicinais, por exemplo, a amêndoa para picadas de cobra e a água do fruto (endosperma líquido) como gotas para inflamação ocular, micoses (*Tinea nigra* e *Tinea versicolor*) e cicatrização de feridas, além do chá de raiz ser indicado para o tratamento de dor na coluna vertebral (RUFINO *et al.*, 2008; HUGHES *et al.*, 2013).

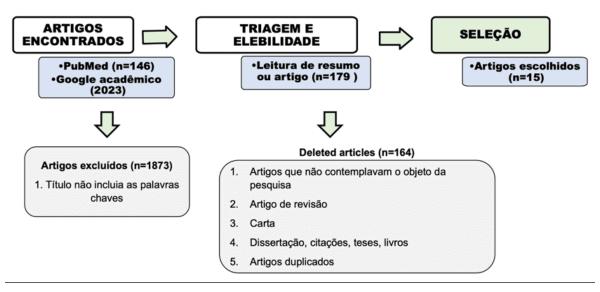
30

O presente trabalho justifica-se uma vez que fornece informações inéditas sobre a prospecção químico farmacológica de *S. coronata*, abordando dados sobre os compostos fitoquímicos já identificados, propriedades farmacológicas e prospecção tecnológica dessa espécie vegetal.

Dessa forma, o objetivo é evidenciar o potencial dessa palmeira como fonte de matéria-prima no desenvolvimento de novas alternativas terapêuticas.

2. MATERIAL E MÉTODOS

Este estudo foi baseado em um levantamento de informações relevantes que foram sistematizadas a partir de uma busca eletrônica em bancos de dados científicos mundialmente aceitos (Academic Google and PubMed). Foram realizadas pesquisas bibliográficas e encontrados artigos havendo a limitação das publicações desses para os anos entre 2002 e 2022. Foram utilizadas as palavras-chave "Syagrus coronata", "phytochemicals", "biological potential" e "plant extract", combinadas por meio do operador booleano AND (Figura 1).


RC: 143752

DO

Figura 1- Resultados da busca realizada em diferentes bancos de dados bibliográficos

Fonte: Elaborada pelos autores.

Como critérios de inclusão, foram considerados os estudos em formato de artigo original que apresentaram os descritores no título ou no resumo. Artigos originais em língua portuguesa e inglesa foram incluídos. Foram excluídos trabalhos de dissertações, teses, livros e artigos cujos títulos não contemplavam o objetivo da revisão. Ainda, não foram inclusas citações, cartas ao editor, artigos de revisão ou abstracts não elegíveis.

É importante ressaltar que a busca por novas tecnologias e novos produtos que procedem de plantas vem crescendo a cada ano. Dessa forma, foi realizada a prospecção tecnológica para a S. coronata para se obter informações sobre a inovação industrial relacionada a planta. Buscaram-se os pedidos de patente depositados no banco de dados brasileiro do Instituto Nacional da Propriedade Industrial (INPI) do Brasil, assim como nas bases de dados internacionais Derwent Innovations Index, European Patent Office (Espacenet) e World Intellectual Property Organization (WIPO). Todos os dados desse levantamento foram reunidos em tabelas, com destaque para as patentes desenvolvidas e registradas no Brasil.

RC: 143752

3. RESULTADOS E DISCUSSÃO

A Tabela 1 apresenta o número de artigos para a espécie S. coronata ao longo do tempo, por base de dados. Observa-se um maior interesse para a palmeira a partir de 2015, quando o número de trabalhos nas bases de dados empregadas mostrase maior que nos anos anteriores, e a busca por validação da espécie permanece até o período atual. Desses trabalhos, quando avaliados títulos e resumos, observase que a busca mostrou trabalhos que reportam valor econômico, social e nutricional, sendo escassos os artigos originais que reportam potencial biológico de S. coronata.

Tabela 1 - Publicações científicas, dissertações, teses e citações para S. coronata ao longo do tempo

Descritor	Ano	Base (nº de resultados)	
		Academic Google	PubMed
Syagrus	2002	09	01
coronata	2003	18	-
	2004	22	-
	2005	28	-
	2006	49	-
	2007	44	-
	2008	75	-
	2009	79	-
	2010	73	-
	2011	85	-
	2012	97	-
	2013	118	-
	2014	113	-
	2015	141	02
	2016	129	03
	2017	149	05
	2018	182	01
	2019	219	04
	2020	219	06
	2021	221	04
	2022	173	03
Total:	20 anos	2023	29

Fonte: Elaborada pelos autores.

RC: 143752

De todos os trabalhos encontrados a partir das palavras-chaves, apenas 15 artigos originais foram elegíveis (Figura 1). Eles foram agrupados de acordo com a sua temática, em tópicos que abordam os aspectos fitoquímicos e o potencial biológico.

4. COMPOSTOS QUÍMICOS DE *SYAGRUS CORONATA* E O POTENCIAL IMPACTO NA INDÚSTRIA

O óleo da semente de *S. coronata* possui mais ácidos graxos saturados do que insaturados em sua composição. Os estudos identificaram que os níveis de ácidos graxos saturados foram aproximadamente três vezes maiores que os ácidos graxos insaturados. Desse modo, uma vez que o óleo de *S. coronata* é rico em ácido láurico de cadeia média, ele pode ser uma fonte de óleo interessante para a indústria oleoquímica e para a obtenção de formulações à base de lipídios com diversas aplicações em produtos farmacêuticos e cosméticos (LISBOA *et al.*, 2020; BESSA *et al.*, 2016; SILVA *et al.*, 2005). Souza *et al.* (2017) analisaram o óleo essencial das folhas e sementes de *S. coronata* e obtiveram a concentração de ácidos graxos saturados de mais de 90%, corroborando com os resultados anteriores (Quadro 1).

Quadro 1 - Principais ácidos graxos presentes no óleo de Syagrus coronata

Espécie	Ácido graxo	Parte da planta (semente)					
S. coronata	C8:0		5,32	13.00	38,83%		
	C10:0	9,16	4,54	8.00	20,51%		
	C12:0	44,55	41,58	48.00	38,52%		
	C14:0	19,04	9,68	14.00	1,99%		
	C16:0	10,03	7,19	5.00	0,15%		
	C18:0	3,78	3,54	2.00			
	C18:1	13,44	23,81	7.00			
	C18:2		3,59	3.00			
		Silva <i>et al.</i> (2015)	Bessa <i>et al.</i> (2016)	Lisboa <i>et al.</i> (2020)	Souza <i>et al.</i> (2017)		

C8:0 = ácido caprílico, C10:0 = ácido cáprico, C12:0 = ácido láurico, C14:0 = ácido mirístico, C16:0 = ácido palmítico, 18:0 = ácido esteárico, C18:1 =ácido oleico e C18:2 = ácido linoleico. Fonte: Elaborada pelos autores.

RC: 143752

5. COMPOSTOS BIOATIVOS

Belviso *et al.* (2013) submeteram o pó dos frutos *in natura* e secos à cromatografia líquida juntamente com espectrometria de massa (LC-MS), o que permitiu a detecção de 13 compostos, dos quais dez foram identificados de forma inequívoca. Os pesquisadores notaram que após a secagem houve o aumento significativo de flavonóis, procianidinas, quercetina-3-O-glicosídeo, quercetina-3-O-rutinosídeo e quercetina (Quadro 2 e Figura 2).

Quadro 2 - Teor (mg/100 g) de compostos fenólicos identificados em sementes de licuri cruas e torradas e resultados da análise ANOVA (p)

Compostos fenólicos	Amêndoa crua	de	licuri	Amêndoa secagem	de	licuri	após	P
Procianidina B1	$1,63 \pm 0,50$			$3,08 \pm 0,47$				*
Dímero de procianidinab	$0,95 \pm 0,01$			1,34 ± 0,16				**
(+) - Catequina	$2,57 \pm 0,04$			$4,95 \pm 0,79$				**
Procianidina B2	$2,60 \pm 0,19$			$3,64 \pm 0,52$				*
Dímero de procianidina 2 ^b	Nq			$0,59 \pm 0,09$				_
Desconhecido ^b	$2,79 \pm 0,41$			$1,09 \pm 0,10$				***
(-) - Epicatequina	$2,16 \pm 0,23$			$7,71 \pm 0,72$				***
Quercetina-3-O-glicosídeo	$0,57 \pm 0,06$			0.86 ± 0.14				**
Rutina	0.06 ± 0.01			$0,14 \pm 0,02$				***
Miricetina	0.34 ± 0.06			0.33 ± 0.07				Ns
Quercetina-3-O- ramnosídeo	1,71 ± 0,34			1,21 ± 0,18				*
Quercetina	0.74 ± 0.09			$1,34 \pm 0,35$				**
Luteolina	Nq			Nq				_

^{*, **, ***} Significativamente diferente em $p \le 0.05$, $p \le 0.01$ ep ≤ 0.001 , respectivamente, ns - não significativo. Os dados foram expressos como médias (n=9) \pm desvios - padrão com base no peso desengordurado; nq = não quantificável. O dímero de procianidina 1 foi quantificado como procianidina B1, o dímero de procianidina 2, como procianidina B2, e desconhecido, como (\neg)-epigalocatechingalato. Fonte: Belviso et al., 2013.

RC: 143752

Figura 2 - Imagens representativas dos principais compostos químicos presente em S. coronata

A- (-)- Epicatequina, B- (+)-Catequina, C- Procianidina B1, D- Procianidina B2, E- Quercetina-3-O-glicosídeo, F- Quercetina, G- Quercetina-3-O-ramnosídeo, H- Rutina, I- Miricetina. Fonte: Pubchem.

Posteriormente, Silva et al. (2015) analisaram o conteúdo total de carotenoides do óleo da polpa e da amêndoa de S. coronata. Foi encontrado 0,7 µg/100g para a amêndoa e 87,0 µg/100g para a polpa, o que indica que esta espécie é uma excelente fonte de provitamina A. Os pesquisadores ainda estipularam qual seria o consumo ideal da polpa da fruta para se atingir a ingestão diária recomendada de vitamina A, sendo necessários de dois a três frutos.

Paralelamente, Paula Filho et al. (2015) encontraram uma concentração expressiva de β-caroteno na polpa de S. coronata, 8,94 mg 100 g⁻¹, além de identificarem uma concentração de vitamina E, α-, β-, γ- tocoferóis e tocotrienóis, sendo o total de 1302,50 µg100⁻¹ para a amêndoa e de 543,58 µg100⁻¹ para a polpa, mas a polpa e amêndoa não foram considerados uma fonte adequada, pois apresentaram baixa concentração de α-tocoferol, cerca de 2,8%.

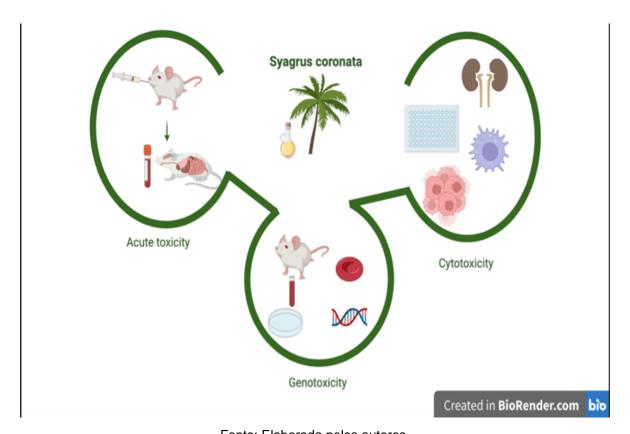
Os resultados apresentados refletem o valor nutricional do licuri como fonte alternativa de alimento, reafirmando sua importância na alimentação das populações que o consomem e o seu potencial para a indústria de alimentos.

6. TOXICIDADE

Santos *et al.* (2021) realizaram ensaios de citotoxicidade com óleo fixo de *S. coronata* utilizando células HEK-293 embrionárias renais, J774; macrófagos A1 e o Sarcoma-180 (S-180) e de toxicidade aguda *in vivo* e genotoxicidade usando camundongos.

Foi utilizado o ensaio 3-(4, 5-dimetiltiazol-2-il)-2,5-difenil tetrazolium brometo (MTT) de viabilidade celular para verificar a possível citotoxicidade do óleo fixo de *S. coronata*. A viabilidade celular foi superior a 50% em todos os ensaios. As concentrações mais altas (100 e 200 μg/mL) inibiram o crescimento celular, exceto para as células HEK tratadas por 48 horas com 100 μg/mL de óleo. Os ensaios não demonstraram uma viabilidade celular <50%, indicando que, nas concentrações testadas, o óleo de licuri não era citotóxico para as células testadas.

A toxicidade aguda foi analisada através de uma única administração de 2000 mg/kg de óleo fixo de *S. coronata* por gavagem nos camundongos. Após a gavagem, os camundongos foram observados por 14 dias, e não houve mudanças comportamentais e fisiológicas. Ao fim dos 14 dias, foi coletado sangue de cada animal para análise bioquímica. Houve uma significativa diminuição na concentração plasmática de proteínas totais e ácido úrico em relação aos órgãos, que foram coletados para análise macroscopicamente e microscopicamente, mas que não apresentaram sinais de fibrose, hemorragia, isquemia ou outras características de lesão.


Para avaliar se o óleo de licuri fixo induz danos genéticos e mutagênese, o ensaio de cometas e o teste de micronúcleo (MN) foram realizados com sangue periférico

37

de camundongos albinos suíços. Os animais receberam óleo de licuri 2000mg/kg por gavagem. Não houve aumento na frequência de micronúcleos em eritrócitos policromáticos no sangue de animais tratados com óleo de licuri. Além disso, os resultados do ensaio do cometa não mostraram aumento na frequência de dano (DF) ou índice de dano (ID) de células sanguíneas nucleadas do grupo tratado com óleo (Figura 3).

Figura 3 - Resumo dos ensaios de citotoxicidade, toxicidade e genotoxicidade em S. coronata

Fonte: Elaborada pelos autores.

38

7. POTENCIAL BIOLÓGICO

7.1 ATIVIDADE ANTIMICROBIANA

A Tabela 2 apresenta os trabalhos que reportam atividade antimicrobiana:

Tabela 2 - Potencial biológico de Syagrus coronata em modelos experimentais in vitro e in vivo

Atividade farmacológica	Parte da planta	Fórmula utilizada	Modelo	Concentraçã o	Resultado s	Referência s
Antimicrobia no	Flor	Extratos aquoso	Difusão em ágar	1000 μg extrato/ disco	Atividade moderada (*CMI = 0,78 mg/mL) contra cepas de S. aureus e fortes atividade (*CMI = 0,19 mg/mL) contra B. cereus.	Hughes <i>et al.</i> (2013)
	Flor	Extratos metanólic o	Difusão em ágar	500 μg extrato/ disco	Moderada atividade (*CMI = 0,78 mg/mL) contra B. cereus.	
	Amêndo a	Óleo fixo	Microdiluiçã o em caldo	40 μL/mL até 0,002 μL/mL.	68,75% das cepas foram sensíveis. CIM: de 0,002 a 0,01 μL/mL CBM: de 0,002 a 0,312 μL/mL	Bessa <i>et al.</i> (2016)
	Amêndo a	Óleo essencial	Microdiluiçã o em caldo	40 μL/mL até 0,002 μL/mL.	68,75% das cepas	

RC: 143752

	foram sensíveis.	
	CIM: de 0,002 a 0,01 µL/mL	
	CBM: de 0,002 a 0,312 µL/mL	

^{*} Concentração mínima inibitória. ** Concentração mínima inibitória para 90%. #Citotoxicidade células de mamíferos. ##Toxicidade aguda. ### Concentração capaz de inibir 50% dos parasitas. Fonte: Elaborada pelos autores.

Tabela 2 - Potencial biológico de Syagrus coronata em modelos experimentais in vitro e in vivo. (conclusão)

Atividade farmacológica	Parte da planta	Fórmula utilizada	Modelo	Concentraç ão	Resultados	Referênci as
	Amêndo a	Óleos essenciai s	In vivo. Infecção em modelo de Galleria mellonella	15,6 mg/kg ou 31,2 mg/kg	*CMI50= 312 µg/mL **CMI90= 625 µg/mL	Santos <i>et al.</i> (2019)
Antiparasitár io	Epicarp o	Extrato polifenóli co aquoso	In vitro. Infecção com Leishmania amazonens es macrófagos de camundong os	50 μg/ml	100% de apoptose de promastigot as de <i>L. amazonens</i> es	Rodrigues et al. (2011)
	Amêndo a	Óleo essencial	In vitro. Infecção com Trypanosom a cruzi em camundong os	125 μg/mL e 250 μg/mL	#CC50 = 244,22 µg/mL ##LC50: 182,49 µg/mL; ###IC50: 408,33 µg/mL;	Souza <i>et al.</i> (2017)

RC: 143752

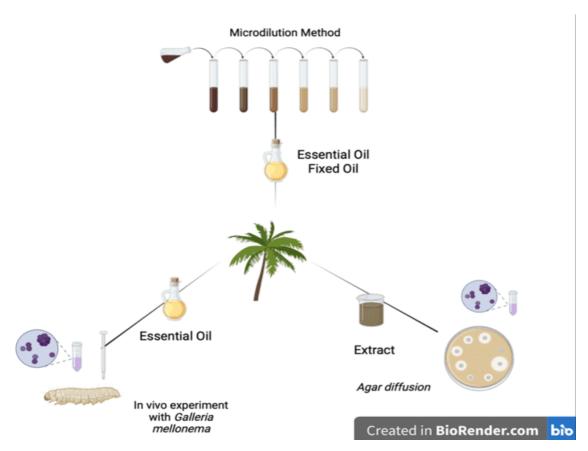
REVISTA CIENTÍFICA MULTIDISCIPLINAR NÚCLEO DO CONHECIMENTO ISSN: 2448-0959

https://www.nucleodoconhecimento.com.br

	Fruto	Extrato fenólico	In vitro.	-	Fruto Cru:	Belviso et al. (2013)
			Ensaio ABTS.		5,88 µMTE/g e	
Antioxidante			Ensaio DPPH.		ABTS = 4,07 µMTE/g.	
					Fruto torrado: DPPH = 7,01 µMTE/ g e	
					ABTS = 5,31 μΜΤΕ/g	
	Amêndo a	Óleo refinado e óleo prensado coronata.	In vitro. Ensaio DPPH.	-	Óleo refinado: IC50 de 2,783 μg .mL ⁻¹ .	Bauer <i>et al.</i> (2013)
					Óleo prensado: IC50 de 3,336 μg .mL ⁻¹ .	
	Amêndo a	Óleo fixo	In vitro. Ensaio DPPH (adaptado).	1000 μg/mL	DPPH: 10% de eliminação de radicais livres.	Souza et al. (2021)
			Ensaio AAT.			
					AAT: 9% de eliminação de radicais livres.	

^{*} Concentração mínima inibitória. ** Concentração mínima inibitória para 90%. #Citotoxicidade células de mamíferos. ##Toxicidade aguda. ### Concentração capaz de inibir 50% dos parasitas. Fonte: Elaborada pelos autores.

Hughes *et al.* (2013) avaliaram os extratos aquosos e metanólico de várias partes de *S. coronata* (folhas, inflorescências, casca de noz e nozes endospermas líquidas e sólidas) a fim de testar sua atividade antibacteriana, através do método de difusão


42

https://www.nucleodoconhecimento.com.br

em ágar com discos de papel de filtro, que foram impregnados com 5,0 µL das amostras de extrato bruto em concentrações iniciais de 200, 100 e 50 mg/mL e colocados nas placas inoculadas com os microrganismos de teste. Somente os extratos aquosos e metanólicos de inflorescência apresentaram atividade antimicrobiana, particularmente contra Bacillus cereus e as cepas Staphylococcus aureus utilizadas (S. aureus CCMB 285, S. aureus CCMB 262, resistente à estreptomicina e dihidroestreptomicina, e S. aureus CCMB 263, resistente à novobiocina). Os autores concluíram que a atividade antimicrobiana da inflorescência se deu principalmente devido a compostos de maior polaridade, podendo estar relacionada à presença de compostos fenólicos (Figura 4).

Figura 4 - Resumo dos ensaios antibacterianos com S. coronata

Fonte: Elaborada pelos autores.

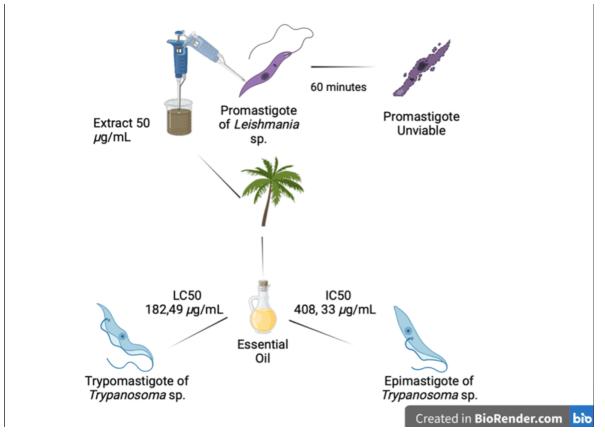
Bessa *et al.* (2016) investigaram os efeitos anti *Staphylococcus aureus* do óleo fixo (SCO) e do óleo essencial (SCEO) de sementes de *S. coronata*, através do ensaio de microdiluição em caldo, contra dezesseis cepas de *S. aureus* com multirresistência a antimicrobianos e uma cepa padrão de *S. aureus* (UFPEDA 02). As diluições em série de cada solução contendo SCEO ou SCO teve início com uma concentração de 40 μL/mL até 0,002 μL/mL. A maioria das cepas, 68,75%, foi sensível ao SCEO em concentrações inibitórias mínimas (CIM) entre 0,002 e 0,01 μL/mL e a concentrações bactericidas mínimas (CBM) variando de 0,002 a 0,312 μL/mL. Os autores realizaram a razão entre MBC/MIC e encontraram uma variação de 1 a 4, classificando SCEO como um agente bactericida. Em relação ao SCO, houve a inibição do crescimento de 52,94% das cepas com CIM entre 0,16 e 0,625 μL/mL. Os valores de CBM para SCO estavam entre 0,16 e 5 μL/mL, no entanto, 47,05% dos isolados foram mortos por 2,5 μL/mL de SCO. Os autores evidenciaram que o SCO apresentou efeitos bactericida e bacteriostático (Figura 4).

Posteriormente, Santos *et al.* (2021) demonstraram a eficácia antimicrobiana do óleo essencial de *S. coronata* (Martius) contra *Staphylococcus aureus*, incluindo aqueles com fenótipos formadores de biofilme e múltipla resistência a drogas, através do ensaio *in* vivo, usando as larvas de *Galleria mellonella*, que receberam 10 μL de suspensão de *Staphylococcus aureus* e uma dose única de 10 μL de soluções de óleo essencial de *S. coronata* na CIM x CIM 2 (15,6 mg/kg ou 31,2 mg/kg, respectivamente). Essa atividade foi atribuída aos ácidos graxos presentes no óleo essencial de *S. coronata* (Figura 4).

Sendo assim, Tanto Bessa *et al.* (2016) como Santos *et al.* (2021) atribuíram a atividade antimicrobiana aos ácidos graxos presentes nos óleos de *S. coronata*.

RC: 143752

7.2 ATIVIDADE ANTIPARASITÁRIA


Rodrigues et al. (2011) estudaram a atividade anti- Leishmania amazonensis do extrato polimérico aquoso de S. coronata. Foi avaliado a viabilidade de promastigotas de L. amazonensis e de macrófagos peritoneais de camundongo na ausência ou presença de extrato aquoso bruto da casca do fruto de S. coronata. Em uma concentração de 50 µg/ml, o extrato aquoso bruto foi capaz de matar 100% dos promastigotas de L. amazonensis em 60 minutos, sem toxicidade para macrófagos de camundongo. Após 30 minutos de incubação com o extrato aquoso, os parasitas não foram mais capazes de crescer em meio fresco. Quando os macrófagos peritoneais de camundongos foram pré-tratados com o extrato na concentração de 33 µg /mL, o índice de associação com o parasita foi reduzido em 70,4% e a produção de Oxido Nítrico (NO) aumentou 158,3% quando comparado ao controle. Quando o tratamento foi aplicado 24 horas após a infecção do macrófago, com os mesmos 33 µg/mL do extrato aquoso bruto, foi capaz de reduzir o índice de associação em 71% e aumentar a produção de NO em 90,4% (Figura 5). A atividade anti- Leishmania amazonensis foi atribuída à alta concentração de procianidina no extrato polimérico aquoso de *S. coronata*.

RC: 143752

DO

Figura 5 - Resumo dos ensaios antiparasitário com S. coronata

Fonte: Elaborada pelos autores.

Em outro estudo sobre a atividade antiparasitária de S. coronata, Souza et al. (2017) avaliaram a composição química e os efeitos in vitro de óleos essenciais (OE) de algumas plantas da Caatinga, entre elas, a S. coronata, sobre Trypanosoma cruzi, o agente etiológico da doença de Chagas. Foi utilizado o OE das sementes de S. coronata. A atividade tripanocida contra epimastigotas e tripomastigotas foi avaliada por microscopia óptica, e a citotoxicidade para células de mamíferos, por Metil Tiazol Tetrazólio (MTT). Os efeitos do OE na infecção parasitária em macrófagos foram estimados determinando o índice de sobrevivência e a porcentagem de inibição da infecção da citotoxicidade contra células de mamíferos quando comparada com a do parasita, por meio da determinação do Índice de Seletividade (SI). Foi detectado, no OE de S. coronata, a presença de ácido octanóico (38,83%),

45

ácido dodecanóico (38,45%) e ácido decanóico (20,51%). O OE apresentou uma citotoxicidade moderada para as células de mamíferos, no valor de CC50 = 244,22 μg/mL, e uma atividade hemolítica menor que 5% para as duas concentrações testadas, de 125 μg/mL e 250 μg/mL. No que se refere a atividade tripanocida *in vitro*, a *S. coronata* obteve valores para LC50 (toxicidade aguda) e IC50 (concentração inibitória média) de cerca de 182,49 e 408,33 μg/mL, respectivamente, contra tripomastigotas e amastigotas. Em relação a seletividade para as formas do parasita, se mostrou baixa (Figura 5). Os autores concluíram que esse resultado se deve à presença dos ácidos octanóico e dodecanóico no EO *S. coronata*, pois ambos possuem alta afinidade com a membrana plasmática.

7.3 POTENCIAL ANTIOXIDANTE

A principal ação de um antioxidante é encerrar a cadeia de reações de oxidação ou impedir que reações de oxidação de radicais livres ocorram em compostos orgânicos (THAO *et al.*, 2020). Os tococromanolis, incluindo os tocoferóis e os tocotrienóis, são moléculas antioxidantes solúveis em lipídios que pertencem ao grupo dos compostos de vitamina E. A vitamina E é o mais importante antioxidante lipossolúvel, pois retarda a degradação oxidativa de lipídios. A sua forma mais ativa é o α-tocoferol (NAVARRETE *et al.*, 2005).

Souza *et al.* (2021) demonstraram que não houve atividade antioxidante relevante nos testes de DPPH (a atividade da substância padrão usada foi semelhante à da vitamina C, Trolox®) e de Atividade Antioxidante Total (AAT) no óleo fixo de *S. coronata*. Na maior concentração testada (1000 μg/mL), apenas 10% de eliminação de radicais livres foi observada no método DPPH e 9% no método TAA, enquanto os controles positivos sequestraram 73% e 89% dos radicais livres nos métodos de avaliação DPPH e TAA, respectivamente. Entretanto, Bauer *et al.* (2013) relataram a alta atividade antioxidante do óleo de licuri usando o método DHPP, IC₅₀ de 2,783 μg mL⁻¹ para o óleo refinado das sementes e 3,336 μg mL⁻¹ para o óleo prensado, mas os métodos de extração utilizados nos dois estudos foram diferentes. A

RC: 143752

temperatura interfere nos resultados, pois causa variações nas concentrações dos componentes do extrato final, como Belviso *et al.* (2013) observaram no estudo para determinar a capacidade antioxidante dos frutos de *S. coronata*, a partir de amostras cruas e torradas. A capacidade antioxidante foi avaliada pelos ensaios de eliminação de radicais ABTS e DPPH. A capacidade antioxidante das sementes torradas foi superior à das amostras cruas, pois apresentou resultados de DPPH = $7.01 \pm 0.23 \,\mu$ M TE/ge e ABTS = $5.31 \pm 0.74 \,\mu$ M TE/g, enquanto o extrato de sementes cruas apresentou DPPH = $5.88 \pm 0.16 \,\mu$ M TE/ge e ABTS = $4.07 \pm 0.17 \,\mu$ M TE/g. Essa diferença pode estar relacionada ao aumento de substâncias fenólicas, em particular à classe dos flavan-3-ols, nos produtos torrados.

8. PROSPECÇÃO TECNOLÓGICA

Na tabela 3, são apresentados os resultados obtidos nas quatro plataformas de depósito de patentes. A tabela 4 apresenta uma coluna destinada aos pedidos de patentes brasileiras na plataforma Derwent, que é reconhecida por possuir mais de 30 milhões de invenções documentadas, englobando produtos que pertencem à indústria de alimentos, cosméticos, farmacêutica e agrícola. À vista disso, demonstra-se o grande valor tecnológico que *S. coronata* apresenta e sua crescente durante os últimos anos.

Tabela 3 – Pesquisa das palavras chaves nas principais bases de dados

Palavras-chave	INPI	WIPO	Espacenet	Derwent
Syagrus coronata	12	5	43	11
Syagrus coronata and phytochemicals	0	0	0	0
Syagrus coronata and biological potential	0	2	2	0
Syagrus coronata and plant extract	0	34	10	1

Fonte: Elaborada pelos autores a partir das bases INPI, WIPO, Espacenet e Derwent (2022).

Tabela 4 - Detentores de pedidos de patentes na plataforma Derwent

Título	Resumo	Número de depósito	Ano de depósito	Instituição
	A presente invenção refere-se à utilização de			

RC: 143752

White chocolate composition comprises a mixture containing almond, pulp, oil and/or olive oil and/or extracts of Syagrus coronata (licuri), cocoa and cocoa derivatives, and sources of sugar, cocoa butter, powdered milk, vanilla and lecithin.	Syagrus coronata (licuri) para a produção de chocolate branco, ao leite ou amargo, bem como descreve o processo de produção desses chocolates. A presente invenção se situa nos campos da nutrição e ciência, tecnologia e engenharia de alimentos, apresentando um conceito diferenciado de chocolates adicionado de amêndoa, crua e/ou cozida e/ou assada, inteira e/ou em pedaços e/ou em pó; polpa, in natura e/ou processada, úmida e/ou desidratada e/ou liofilizada; óleo e/ou azeite e/ou extratos de Syagrus coronata (licuri), oferecendo ao consumidor um produto inovador.	BR102021004384 (A2)	2021	Instituto Federal de Educação, Ciência e Tecnologia Baiano
---	--	------------------------	------	--

Fonte: Elaborada pelos autores a partir da base Derwent (2022).

Tabela 4 - Detentores de pedido de patentes na plataforma Derwent (continuação)

Título	Resumo	Número de depósito	Ano de depósito	Instituição
	Em um aspecto, a presente invenção revela uma composição farmacêutica que compreende óleo de Syagrus coronata e pelo menos um fármaco. Em outro aspecto, a presente invenção revela um método de promoção da permeabilidade cutânea de fármacos compreendendo as etapas de: misturar óleo de Syagrus coronata com pelo menos um fármaco e contatar a composição			

RC: 143752

Pharmaceutical composition comprises Syagrus coronata oil and pharmaceutically acceptable additive	formada com a pele de um indivíduo. Ainda, a presente invenção proporciona uma composição cosmecêutica que compreende óleo de Syagrus coronata e pelo menos um excipiente farmaceuticamente aceitável. Em outro aspecto, a presente invenção compreende um método para promoção da hidratação que compreende contatar uma composição dermocosmética contendo óleo de Syagrus coronata com a pele de um indivíduo	BR 102013031058- 1 A2	2013	Universidade Federal de Pernambuco
Producing mycelium, ligninolytic enzymes and medicinal basidioma involves using residues of Syagrus coronata as substrate and performing solidstate fermentation	Descreve-se o processo de produção de basidiomas e enzimas ligninolíticas (lacase e manganês peroxidase) de Ganoderma lucidum em resíduos de cascas de frutos, folhas e brácteas de Syagrus coronata por meio de fermentação em estado sólido. Destaca-se que o substrato bráctea de licuri foi o mais eficiente para a produção biotecnológica de basidiomas e das enzimas ligninolíticas estudadas. Especificamente, a invenção utiliza esses resíduos como substrato no processo de bioconversão para formação de micélio e basidiomas, bem como para a produção de enzimas ligninolíticas por esta espécie de fungo.	BR 102015014111- 4 A2	2015	Universidade Estadual de Feira de Santana

Fonte: Elaborada pelos autores a partir da base Derwent (2022).

RC: 143752

Tabela 4 - Detentores de pedido de patentes na plataforma Derwent (continuação)

Título	Resumo	Número de depósito	Ano de depósito	Instituição
Administration of Syagrus coronata oil to chemotherapy patients comprises minimisation of harmful cytarabine effects through fatty acids production	Para minimizar os efeitos nocivos da citarabina na mucosa intestinal de ratos tratados com esse antineoplásico, o óleo de ouricuri foi utilizado como principal fonte de ácidos graxos de cadeia média e curta. Como a administração de ácidos graxos de cadeia curta, que são fatores tróficos para a mucosa intestinal, melhoram as enterites, o óleo de ouricuri produziu esse efeito. Foi demonstrado que a administração dos óleos vegetais tais como o óleo de soja não foi capaz de minorar os efeitos colaterais provocados pela administração do uso da citarabina. O presente invento observou os efeitos benéficos do óleo de ouricuri na mucosa intestinal de ratos submetidos a citarabina, caracterizados pelas melhorias verificadas nas análises histológica, morfométricas e nas dosagens de DNA e proteína.	PI 0402893-7 A	2006	Universidade Federal de Minas Gerais
Use of licuri oil is used for preparation of cosmetic	A presente invenção refere-se ao setor tecnológico de cosméticos, tendo como objeto uma composição cosmética que			50

RC: 143752

CONHECIMENTO https://www.nucleodoconhecimento.com.br

composition for prevention against the effects caused by ultraviolet A/ultraviolet B radiation, urban pollution and	compreende óleo de licuri, tendo indicação particular antipoluição, radiação UVA/UVB, poluição urbana, fumaça de cigarro e ainda oferece efeito antienvelhecimento,	BR102019011775(A2)	2019	Loccitane do Brasil S.A.
translocation of AhR receptor	refere ao uso de óleo de licuri para preparação da dita composição cosmética e método cosmético de aplicação da mesma.			

Fonte: Elaborada pelos autores a partir da base Derwent (2022).

Tabela 4 - Detentores de pedido de patentes na plataforma Derwent (continuação)

Título	Resumo	Número de depósito	Ano de depósit o	Instituiçã o
Cosmetic composition for topical application, comprises licuri oil, one emollient which is selected from coconut-caprylate/caprate ether dicaprylic, ethylhexyl isononanoate, methylphosphonofluorida te palmitate, tocopherol derivative	A presente invenção refere-se ao setor tecnológico de cosméticos, tendo como objeto uma composição cosmética, compreendendo óleo de licuri e outros componentes/excipiente s, além de veículo cosmeticamente aceitável, sendo apresentado principalmente, na forma de banho óleo e creme em óleo. Tal composição cosmética particularmente de aplicação tópica compreende: óleo de licuri; pelo menos um	BR10201702821 3-A2	2019	Loccitane do Brasil S.A.

RC: 143752

CONHECIMENTO ISSN: 2448-0959

https://www.nucleodoconhecimento.com.br

emoliente, sendo selecionados entre: coco-caprilato/caprato éter dicaprílico, isononanoato de etilhexila, palmitato de metilfosfonofluoridato e suas combinações; um derivado de tocoferol, sendo preferencialmente acetato de tocoferol; um veículo cosmeticamente aceitável. Além disso, a presente invenção refere-se ao uso da referida composição cosmética e ao método cosmético de aplicação da mesma.	

Fonte: Elaborada pelos autores a partir da base Derwent (2022).

Tabela 4 - Detentores de pedido de patentes na plataforma Derwent (conclusão)

Título Resumo Número de depósito Ano de depósito Instituição

A presente invenção compreende uma composição bioinseticida produzida a partir da conversão termoquímica do fruto do licuri, sem a amêndoa, na ausência de oxigênio. A referida composição possui característica inseticida fumigante excelente contra insetos pragas de grãos armazenados, Tribolium castaneum e Rhyzopertha dominica, e característica inseticida eficiente de contato contra a praga avícola Alphitobius diaperinus. A referida invenção propicia o aproveitamento de um resíduo, que é utilizado como matéria-prima, gerando um produto com propriedade	BR 102019007434- 5 A2	2019	Universidade Federal Fluminense
---	-----------------------------	------	---------------------------------------

RC: 143752

aqueous and organic phases and extracting aqueous phase	por insetos e eliminação do A. diaperinus dos galinheiros. A referida composição é um produto da pirólise de uma biomassa agrícola, obtido a partir da condensação de gases produzidos nessa, sendo utilizada a fase aquosa fracionada desse processo	
	de pirólise, a qual era descartada.	

Fonte: Elaborada pelos autores a partir da base Derwent (2022).

9. CONCLUSÕES E PERSPECTIVAS

Observa-se que o método de revisão bibliográfica contribuiu para a comprovação dos dados sobre a crescente na pesquisa científica da bioprospecção por espécies vegetais que possuem potencial econômico e possam apresentar atividade biológica, os quais se apresentaram suficientes para poder-se constatar que houve o aumento de estudos sobre *Syagrus coronata*. A partir dos resultados obtidos, comprovou-se o potencial econômico que a planta apresenta tanto para a população das comunidades onde é encontrada (uso tradicional) quanto para a indústria (utilização em cosméticos, patentes já depositadas).

Espera-se, com esse estudo, contribuir para divulgação de informações sobre *S. coronata*, colaborando para futuras investigações a respeito de outros potenciais que a planta possua, como na alimentação humana e animal, na elucidação de seus mecanismos de ação, na farmacocinética, na farmacodinâmica e até sobre efeitos adversos em relação a alguns agravos à saúde.

REFERÊNCIAS

ANDRADE, Wbaneide Martins de *et al.* Knowledge, uses and practices of the licuri palm (Syagrus coronata (Mart.) Becc.) around protected areas in northeastern Brazil holding the endangered species Lear's Macaw (Anodorhynchus leari). **Tropical Conservation Science**, v. 8, n. 4, p. 893-911, 2015. Disponível em:

RC: 143752

CONHECIMENTO

https://www.nucleodoconhecimento.com.br

https://doi.org/10.1177/194008291500800403. DOI: Acesso em: 10.1177/194008291500800403

BASTOS, Fernanda Carneiro. Obtenção e fracionamento de ésteres metílicos de ácidos graxos a partir do óleo de coco ariri (Syagrus cocoides martius). 2020. 89 f. Dissertação (Mestrado em Química) - Universidade Federal do Maranhão, São Luís, MA, 2020.

BAUER, Luciana Carolina et al. Chemical characterization of pressed and refined licuri (Syagrus coronata) oils. Acta Scientiarum. Maringá, v. 35, n. 4, p. 771-776, 2013. Disponível em: https://doi.org/10.4025/actascitechnol.v35i4.20251. Acesso em: 02 out. 2022. DOI: 10.4025/actascitechnol.v35i4.20251.

BELVISO, Simona et al. Phenolic composition, antioxidant capacity and volatile compounds of licuri (Syagrus coronata (Martius) Beccari) fruits as affected by the traditional roasting process. Food research international, v. 51, n. 1, p. 39-45, 2013. Disponível em: https://doi.org/10.1016/j.foodres.2012.11.012. Acesso em: 02 out. 2022. DOI: 10.1016/j.foodres.2012.11.012.

BESSA, Cibele Maria Alves da Silva et al. Syagrus coronata seed oils have antimicrobial action against multidrug-resistant Staphylococcus aureus. Journal of Medicinal Plants Research, v. 10, n. 23, p. 310-317, 2016. Disponível em: https://doi.org/10.5897/JMPR2016.6098. Acesso em: 02 out. 2022. DOI: 10.5897/JMPR2016.6098.

COIMBRA, Michelle Cardoso; JORGE, Neuza. Characterization of the pulp and kernel oils from Syagrus oleracea, Syagrus romanzoffiana, and Acrocomia aculeata. Journal of food science, v. 76, n. 8, p. C1156-C1161, 2011. Disponível em: https://doi.org/10.1111/j.1750-3841.2011.02358.x. Acesso em: 02 out. 2022. DOI:10.1111/j.1750-3841.2011.02358.x.

Derwent Innovations Index on Web of Science. DERWENT © 1968 - 2023. em: https://clarivate.com/products/scientific-and-academic-Disponível research/research-discovery-and-workflow-solutions/webofscienceplatform/derwent-innovations-index-on-web-of-science/. Acesso em: 02 out. 2022.

European Patent Office. **ESPACENET** © 1998 - 2023. Disponível em: https://worldwide.espacenet.com. Acesso em: 02 out. 2022.

GUIMARÄES, Julian dos Santos; SHIOSAKI, Ricardo Kenji; MENDES, Marianne Louise Marinho. Licuri (Syagrus coronata): characteristics, importance, potential and perspectives of the small coconut from Brazil. Desenvolvimento e Meio Ambiente. 58, 169-192, jul./dez. 2021. Disponível http://dx.doi.org/10.5380/dma.v58i0.68852. Acesso em: 02 out. 2022. DOI: 10.5380/dma.v58i0.68852 e-ISSN 2176-9109

54

RC: 143752

HUGHES, Alice Ferreira da Silva *et al.* Antimicrobial activity of Syagrus coronata (Martius) beccari. **Brazilian Archives of Biology and Technology**, v. 56, p. 269-274, 2013. Disponível em: https://doi.org/10.1590/S1516-89132013000200012. Acesso em: 02 out. 2022. DOI: 10.1590/S1516-89132013000200012.

Instituto Nacional da Propriedade Industrial. **INPI** © 1970 - 2023. Disponível em: https://www.gov.br/inpi/pt-br/servicos/patentes. Acesso em: 02 out. 2022.

JANSSEN, Thomas; BREMER, Kåre. The age of major monocot groups inferred from 800+ rbcL sequences. **Botanical Journal of the Linnean Society**, v. 146, n. 4, p. 385-398, 2004. Disponível em: https://doi.org/10.1111/j.1095-8339.2004.00345.x. Acesso em: 02 out. 2022. DOI: 10.1111/j.1095-8339.2004.00345

LISBOA, Milena Chagas *et al.* Oleochemistry potential from Brazil northeastern exotic plants. **Biochimie**, v. 178, p. 96-104, 2020. Disponível em: https://doi.org/10.1016/j.biochi.2020.09.002. Acesso em: 02 out. 2022. DOI: 10.1016/j.biochi.2020.09.002.

NAVARRETE, Marta *et al.* Theoretical study of the antioxidant activity of vitamin E: reactions of α -tocopherol with the hydroperoxy radical. **Journal of Chemical Theory and Computation**, v. 1, n. 2, p. 337-344, 2005. Disponível em: http://dx.doi.org/10.1021/ct0498932 Acesso em: 02 out. 2022. DOI: 10.1021/ct0498932.

NOBLICK, Larry R. A revision of the genus Syagrus (Arecaceae). **Phytotaxa**, v. 294, n. 1, p. 1–2622, 2017.Disponível em: https://doi.org/10.11646/phytotaxa.294.1.1. Acesso em: 02 out. 2022. DOI:10.11646/phytotaxa.294.1.1

PAULA FILHO, Galdino Xavier de *et al.* Study of the physical and physicochemical characteristics of fruits of the licuri palm (Syagrus coronata (Mart.) Becc.) found in the Atlantic Forest of Minas Gerais, Brazil. **Food Science and Technology**, v. 35, n. 3, p. 474-480, 2015. Disponível em: http://dx.doi.org/10.1590/1678-457X.6652. Acesso em: 02 out. 2022. DOI: 10.1590/1678-457X.6652.

PETOE, Peter; HEATUBUN, Charlie D.; BAKER, William J. A monograph of Hydriastele (Areceae, Arecaceae) in New Guinea and Australia. **Phytotaxa**, v. 370, n. 1, p. 92, 2018. Disponível em: https://doi.org/10.11646/phytotaxa.370.1.1. Acesso em: 02 out. 2022. DOI: 10.11646/phytotaxa.370.1.1.

RODRIGUES, Igor A. *et al.* In vitro anti-Leishmania amazonensis activity of the polymeric procyanidin-rich aqueous extract from Syagrus coronata. **Journal of Medicinal Plant Research**, v. 5, p. 3781–3790, 2011.

55

RUFINO, Márcio Ulisses de Lima *et al.* Conhecimento e uso do ouricuri (Syagrus coronata) e do babaçu (Orbignya phalerata) em Buíque, PE, Brasil. **Acta Botanica Brasilica**, v. 22, p. 1141-1149, 2008. Disponível em: https://doi.org/10.1590/S0102-33062008000400025. Acesso em: 02 out. 2022. DOI: 10.1590/S0102-33062008000400025.

SANTOS, Bruno Souza dos *et al.* Anti-staphylococcal activity of Syagrus coronata essential oil: Biofilm eradication and in vivo action on Galleria mellonela infection model. **Microbial Pathogenesis**, v. 131, p. 150-157, 2019. Disponível em: http://dx.doi.org/10.1016/j.micpath.2019.04.009. Acesso em: 02 out. 2022. DOI: 10.1016/j.micpath.2019.04.009.

SILVA, C. G. da *et al.* Evaluation of antioxidant activity of Brazilian plants. **Pharmacological research**, v. 52, n. 3, p. 229-233, 2005. Disponível em: https://doi.org/10.1016/j.phrs.2005.03.008. Acesso em: 02 out. 2022. DOI: 10.1016/j.phrs.2005.03.008.

SILVA, Raquel B. *et al.* A comparative study of nutritional composition and potential use of some underutilized tropical fruits of Arecaceae. **Anais da Academia Brasileira de Ciências**, v. 87, p. 1701-1709, 2015. Disponível em: https://doi.org/10.1590/0001-3765201520140166. Acesso em: 02 out. 2022. DOI: 10.1590/0001-3765201520140166.

SOARES, Kelen Pureza; PIMENTA, Ricardo Soares; GUIMARÃES, Carlos Alex. Duas novas espécies de Syagrus Mart (Arecaceae) para o Brasil. **Ciência Florestal**, v. 23, p. 417-426, 2013. Disponível em: https://doi.org/10.5902/1980509810553. Acesso em: 02 out. 2022. DOI: 10.5902/1980509810553.

SOUZA, Larissa Isabela Oliveira de *et al.* The chemical composition and trypanocidal activity of volatile oils from Brazilian Caatinga plants. **Biomedicine & Pharmacotherapy**, v. 96, p. 1055-1064, 2017. Disponível em: https://doi.org/10.1016/j.biopha.2017.11.121. Acesso em: 02 out. 2022. DOI: 10.1016/j.biopha.2017.11.121.

SOUZA, Talita Giselly dos Santos *et al.* Biological safety of Syagrus coronata (Mart.) Becc. Fixed oil: Cytotoxicity, acute oral toxicity, and genotoxicity studies. **Journal of Ethnopharmacology**, v. 272, p. 113941, 2021. Disponível em: https://doi.org/10.1016/j.jep.2021.113941. Acesso em: 02 out. 2022. DOI: 10.1016/j.jep.2021.113941

THAO, Pham Thi Thu *et al.* Substituent effects on the N–H Bond dissociation enthalpies, ionization energies, acidities, and radical scavenging behavior of 3, 7-disubstituted phenoxazines and 3, 7-disubstituted phenothiazines. **ACS omega**, v. 5, n. 42, p. 27572-27581, 2020. Disponível em:

RC: 143752

REVISTA CIENTÍFICA MULTIDISCIPLINAR NÚCLEO DO CONHECIMENTO ISSN: 2448-0959

https://www.nucleodoconhecimento.com.br

http://dx.doi.org/10.1021/acsomega.0c04144. Acesso em: 02 out. 2022. DOI: 10.1021/acsomega.0c04144.

World Intellectual Property Organization. **WIPO** © 1967 - 2023. Disponível em: https://www.wipo.int/tools/en/gsearch.html#gsc.tab=0. Acesso em: 02 out. 2022.

Enviado: 13 de março, 2023.

Aprovado: 05 de abril, 2023.

¹ Pós-graduação em Gestão da Qualidade em Saúde e Acreditação Hospitalar (UNIAMÉRICA); Bacharel em Farmácia (UFMA); Mestranda em Ciência da Saúde (UFMA). ORCID: 0000-0003-4763-218X. Currículo Lattes: http://lattes.cnpq.br/5386259838779400.

² Bacharel em Farmácia (UFMA). ORCID: 0000-0002-5769-6673.

³ Doutora pela RENORBIO (UFMA). ORCID: 0000-0002-4400-0841.

⁴ Doutor pela Universidade de São Paulo. ORCID: 0000-0001-7073-8308.

⁵ Doutor pela Universidade Federal de Goiás. ORCID: 0000-0002-2506-169X.

⁶ Doutora pela RENORBIO (UFMA). ORCID: 0000-0003-0901-7194.

⁷ Orientadora. Doutora pela RENORBIO (UFMA). ORCID: 0000-0003-3864-3061. Currículo Lattes: http://lattes.cnpq.br/4752952470368965.